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Estimating Exposure Using Kriging: A
Simulation Study
by Daniel Wartenberg,* Christopher Uchrin,t and
Patricia Coogan'

Reospective studies ofdisease often are limited by the resolution ofthe exposumeasurements. Forexmple, in atypical
study ofadverse health effects from contaminated groundwater, the number of wells sampled may range fron only a few
to as many as several dozen, while the number ofcases and controls may be in the hundreds or more. To derive individual
estimates of exposure for wells that were not sampled, investigators must extrapolate. In this study, we compare three
methods of extrapolating from a limited number ofobservations to estimate individual exposures. Using two naive models
ofgroundwater contamination, wecompare nearest neighbor interpolaion, inverse distance squared weighting, and kriging
for estimating exposure based on alimited number ofmeasurements. Our results show that although kriging isastatistcally
optimal method, it is not markedly better than simpler interpolation algorithms, though it is considerably more complex
to use. Aberrant well measurements and discontinuities are problematic for all methods. We provide some guidance in
interpolating data and outline a more comprehensive comparison of methodology.

Introduction
The quality and power of retrospective studies ofdisease, par-

ticularly in the context ofcommunity toxics, are often limited by
the resolution of the exposure measurements. For example, one

may wish to study a situation in which a groundwater contami-
nant that is suspected of causing disease has been detected in
some private wells. Ifone is limited by available resources, as is
most often the case, it may not be possible to conduct new field
measurements to determine the extent of the contamination. In-
stead, one often has only the use ofan extant set ofdata collected
previously for another purpose on which to base the exposure
assessment. The number of wells sampled in the region ofcon-
cern may range from only a few to as many as several dozen, even

though the population of concern may number in the hundreds
to thousands to tens of thousands. And yet, to conduct an

epidemiologic investigation, one must estimate exposure for
each study subject and determine whether there is an association
between this estimated exposure and disease. This study
evaluates through simulation the effectiveness of a few methods
of exposure extrapolation or estimation. We also apply the ex-

trapolation methods to one real data set from an ongoing study
of cancer incidence. Unlike studies that assess the accuracy of
estimation, we evaluate the impact of the estimates on

epidemiologic measures of effect.
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Extrapolating Exposure Data
A variety of strategies can be used to extrapolate or predict

from a few samples to many subjects. In their most straightfor-
ward application, all assume a relatively (or locally) smooth con-
taminant surface. For the simulations considered in this study,
we constrain the surface to meet this assumption. In one set ofex-
trapolation methods, the investigator fits a geographic function
to the entire data set and estimates values based on the fitted sur-
face [e.g., global mean/median (1); trend surface analysis (2,3)].
In another set of methods, the investigator fits a geographic func-
tion to a local set ofpoints and estimates values from the locally
fitted surface [e.g., Akima interpolation (4); local trend surface
analysis (5,6); Laplacian smoothing splines (7); natural neighbor
interpolation (8)]. In the third set of methods, the investigator
takes a weighted average of some or all observed points to give
interpolated values [e.g., inverse distance squared weighting;
kriging (9)]. Few studies have compared these methods [Laslett
et al. (1) and Boufassa and Armstrong (10) are notable excep-
tions], although many cite specific weaknesses or limitations
(11-14). For this study, we pick three methods for estimating con-
tamiinantconcentrations at unmeasured locations: a) assign to the
unknown point the value at the nearest observed point (nearest
neighbor interpolation (NN); b) assign to the unknown point a
weighted average (mean) ofthe nearest k points using an inverse
squared distance (ISD) weighting rule; and c) assign to the
unknown point an estimate derived from kriging (KRG).
Implementation of the first method is straightforward. One

calculates the distance from each observed data value to the point
to be estimated, chooses the shortest distance, and assigns the
value from that closest point to the point to be estimated.
The second method is an approach used in many contouring
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programs and geological applications. One calculates the
distance from each observed data point to the point to be
estimated, selects the nearestkpoints, calculates the weight for
that point as the inverse square ofthat distance, sums the product
of these weights times their respective values, and divides this
weighted sum by the sum ofthe weights. This quotient is assigned
to the point to be estimated. Intuitively, this is how we often
evaluate maps visually. That is, mentally we take an average of
values nearby the point to be estimated, giving more emphasis
to those closer by and not allowing far away points to contribute
substantially to our intuitive estimate.
The third method is considerably more complex. Kriging is

another weighted-average method ofesimation that assumes that
geographically close samples are more similar than geographic-
ally distant ones. It is statistically optimal in that it is a BLUE
(best, linear, unbiased estimator). Kriging is the preferred
approach of geostatisticians to interpolation and prediction,
although it requires investigator intervention and sophisticated
programming. A thorough discussion of its use is beyond the
scope of this paper. The reader is referred to Journel and Huij-
bregts (9) for an extensive discussion ofthe method and Jernigan
(15) for a more elementary presentation.

In brief, to krige a data set, one must first estimate the vario-
gram, or spatial covariance function, of the data. That is, one
must estimate how similar each observation is to each of its
neighbors, and then one must fit this set of similarities to a
mathematical function that increases as the separation distance
between point pairs increases. The variogram is then used to
derive optimal weights for averaging observations nearby the
point to be predicted into the estimated value. It is similar to the
second method, ISD weighting, in that the weights decrease as
a function ofthe distance ofeach observed datum to the point to
be estimated. It differs in that each weight, rather than being ar-
bitrarily the inverse ofthe squared distance, is derived from an
observed property of the data, the spatial covariance.

Methods
Simulation Strategy
To compare the utility of these methods for estimating ex-

posure, we consider a hypothetical epidemiological study. In this
study, we postulate a contmination scenario, sample the ground-
water quality based on this scenano, select a set ofcases and con-
trols from the region ofthe contamination, and calculate both the
difference in mean exposure among cases and controls and the
odds ratio.

First we postulate a contamination scenario. We do this to
enable us to simulate sampling the groundwater and the disease
process. We use this scenario to generate cases and controls via
our model and to generate groundwater samples. But, wedo not
use data from this contamination scenario directly for our
analyses because it is unrealistic to have a complete assessment
of contamination in a study; instead we use samples. For this
study, we consider two scenarios. The first scenario has a rec-
tangular plume ofcontaminant in a rectngular study area, 11 by
11 (Fig. L4). A tongue ofcontmination extends into the study
area from the south, covering the middle half of the southern
border and extending halfway through the study area toward the
north. All conmaminant levels within thecontminant tongue have

a concentration of 1. All contaminant levels outside ofthe con-
taminant tongue have a concentration of0.
Nowwe sample the contminant field. For this study, we locate

25 randomly placed sampling locations within the study area,
determine the "true' concentration based on our contamination
scenario, and then include a term for the random inaccuracy
associated with the measurement process. Each contamination
value should be exactly 1 or 0, but we allow the measurements
to vary abitby adding a random number from a uniform distribu-
tion ranging from -1 to 1.

Next, we must pick our study subjects and assign them case or
control status. For this study, we have decided to use 50 cases and
50 controls. Tb find them, we pick random locations thughout
our study area. For each location, we evaluate the true contami-
nant level. Then, we determine ifthis location is a case or con-
trol. We set a disease cutoffbased on a background rate ofdisease
and select a dose-response model. For this study, we assume that
the background rate ofdisease is 5%. The dose-response model
for this study is linearly increasing risk with increasing dose,
with those exposed to 1.0 units of contminant experiencing a
15% incidence rate or a relative risk of 3. In other words, loca-
tions within the conUminant plume have a 3 in 20 chance ofbe-
ing a case and a 17 in20 chance ofbeing a control. Those outside
the plume have a 1 in 20 chance ofbeing a case and a 19 in 20
chance ofbeing a control. Locations are collected randomly until
50 cases and 50 controls have been amassed.

Finally, we must estimate the exposure for each ease and each
control based on our samples ofthe groundwater conutmination.
For our standard, which we call Truth, we use the true concen-
tration of the contminant which we know by virtue of having
defined it analytically. For theNN method, for each study sub-
ject, we select the "measured" value of the contaminant at the
closest ofthe 25 measurements. For the ISD method, we take a
weighted average ofthe 25 measurements. For theKRGmethod,
we first fit a variogram to the contamination scenario and then
apply the kriging algorithm to the nearest 8 points. For each of
these exposure estimation methods, we calculate the mean
estimated exposure among cases and the mean estimated ex-
posure among controls. We also assign each study subject an ex-
posure status (exposed or unexposed) based on whether their
measured exposure is greater than 0.5 (exposed) or less than 0.5
(unexposed), and calculate an odds ratio. We report means and
standard deviations for 500 replications of each scenario.
For the second simulated scenario, we change the shape and

size ofthe contamination plume (Fig. 2A). We assume it to be a
paraboloid, with maximum of 1 near the middle of the south
border, filling offto 0 halfway toward the southern corners and
alsotward the middle ofthe study area. Having defined the con-
tamination scenario, the rest ofthe procedure follows that for the
first simulation.

Real Data: Trichloroethylene in the Ashumet
Valley, Massachusetts

This consideration ofextrapolation methods for groundwater
contamination data was motivated by an ongoing study of an
apparent excess ofcancer cases on Cape Cod and the possibility
ofenvironmental causation. One of the potential environmental
agents to which some attribute the cancer excess is groundwater
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FIGURE 1. The discontinuous plume. This figure shows plots of groundwater concentrations for a contaminant for model 1, the discontinuous plume. (A) Plot of
the model data. (B) Results of nearest neighbor interpolation. (C) Result of inverse distance squared weighting interpolation. (D) Result of kriging. (E) Plot of
the sampled data values.
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FIGURE 2. The continuous (or parabolic) plume. This figure shows plots ofgroundwater concentrations for a contaninant for model 2, the continuous (or parabolic)
plume. (A) Plot ofthe model data. (B) Results of nearest neighbor interpolation. (C) Result ofinverse distance squared weighting interpolation. (D) Result ofkriging.
(E) Plot of the sampled data values.
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contamination. Since we were unable to sample the water
ourselves due to budgetary constraints, we relied on a set ofwater
quality measurements made by the United States Geological
Survey. They have taken a series ofmeasurements ofa variety of
organic contaminants throughout the region. Cases and controls
were identified independently of this information, and exposures
had to be assigned to each. There are 59 unique water quality
measurements, 1200 cases, and 1500 controls. We apply these
same three approaches to these data although in this part of the
exercise we cannot assess the truth.

Results
Simulations
The results ofthe simulations are abit surprising (Tables 1 and

2). Listed in the tables are mean exposure values for cases and
their standard deviations, mean exposure values for controls and
their standard deviations, and mean odds ratios and their stan-
dard deviations (defining content values ofgreater than 0.5 as ex-
posed). The row labeled "Truth" is derived by calculating these
indices for the sample points based on the analytically derived
contamination values. The other three rows are the result ofthe
estimation procedures using sampled contamination values (the
true value plus a random error component). Variograms were fit
to the contamination scenario rather than the sampled data
because of the instability of the estimated variances based on a
relatively small number ofsamples. The fitted variogram for the
first situation had a nugget value of 0, a sill of 0.27, and a range
of 6. The fitted variogram for the second situation had a nugget
value of 0, a sill of 0.06, and a range of 5.5.
For the first simulation, we see that all of the methods un-

derestimated case exposure, overestimated control exposure,
and underestimated the odds ratio. Results for all three
methods are relatively similar and more similar to one another
than to the truth. This suggests, not surprisingly, that one in-
herent problem in all these estimation procedures is sampling,
both the number of samples and their placement. Figures 1B,
IC, and ID show maps of the contamination based on these
procedures for one randomly selected replication. KRG most
nearly captures the plume, although all do poorly. Figure IE
shows a map of the sampled contamination that was used to
draw the three maps.

For the second simulation, again we see that all ofthe methods
underestimated case exposure, overestimated (or equalled) con-
trol exposure and underestimated the odds ratio and the results
for the three methods differed more from the truth than from each
other. NN is noticeably worse than ISD or KRG. Figures 2B, 2C,
and 2D show maps of the contamination based on these pro-
cedures for one randomly selected replication. Again, KRG most
nearly captures the true surface. Figure 2E shows a map of

Table 1. Simulation results for a discontinuous contaminant plume.'
Method Case exposure Control exposure Odds ratio
Truth 0.50 0.07 0.23 0.06 3.83 1.95
NN 0.46 0.19 0.25 0.18 1.72 0.86
ISD 0.42 ±0.16 0.28 0.15 2.26 1.28
Krige 0.43 0.17 0.24 0.17 2.17 1.21

'All values are means and standard deviations of 500 replicate runs.

Tlble 2. Simulation results for a continuous contaminant plume.'
Method Case exposure Control exposure Odds ratio
Truth 0.16 ±0.04 0.08 ±0.03 2.31 ± 10.60
NN 0.15 0.16 0.08 0.16 1.33 0.70
ISD 0.14 0.13 0.10 0.13 1.76 1.56
Krige 0.14 ± 0.15 0.08 ± 0.15 1.72 ± 1.31

'All values are means and standard deviations of 500 replicate runs.

the sampled contamination thatwas used todraw the three maps.
It is interesting to note that of the six maps, each map is more
similar to the other map made with the same method than to the
othermaps ofthe samecontminant scenario. This suggests acon-
sistent bias in estimation. It is partially an artifact of sampling.

Real Data
Results of interpolating the real data are shown in Figure 3.

The observed data values are shown in Figure 3A, the NN
estimates in Figure 3B, the ISD estimates in 3C, and the KRG
estimates in Figure 3D. Both ISD and KRG show an apparent
plume entering from the left side of the map. KRG shows a
more smoothly varying function, while ISD shows a steep gra-
dient. NN shows a corresponding steep gradient but no source
from the left. KRG has a peak somewhat centrally located
from left to right while both ISD and NN show maxima
tward the right-hand border. Looking at the data in Figure 3A
one sees that the distribution of sample sites is somewhat
clustered and that the distribution of data values is not smooth.
Highs exist toward the bottom right and along a transect from
the bottom left to the top right. But, as always, these data are
confounded with sampling error, temporal variation, and dif-
ferent well depths, among other problems.

Discussion
At the outset of this discussion, it is important to note the

limited scale of this study. This exercise is meant as a
preliminary investigation of a problem that warrants more
detailed study and as a vehicle for identifying relevant issues
for consideration in further work. In subsequent studies, we
plan to characterize this problem more thoroughly and make
recommendations regarding particular strategies for handling
specific data situations.
There are many problems in these simulations that affect all

methods. These include the number and placement of samples,
the number and placement of subjects, the measurement preci-
sion, and the nature ofthe contamination plume. There also are
many assumptions, simplifications, and decisions built into the
methodology as presented here that can be controlled by the in-
vestigator. Astute choices could improve the perfonnance ofany
or all of these methods.

First, we review the simulation methodology. The models
chosen for the contamination plume were arbitrary and un-
realistic. Neither plume corresponds closely to true contamina-
tions in shape or slope. In future studies, we plan to use more
sophisticated groundwater models (16,17). Measurement
variability was assumed independent of contmination value,
which probably is inappropriate. And the sample localities were
limited to 25 and were randomly placed. All methods would im-
prove with more samples. All methods would give more accurate
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FIGURE 3. Trichloroethylene in the Ashumet alley, Massachusetts. This figure show plots ofgroundwater contamination by trichloroethylene in the Ashumet Valley,
Massachusetts. All data are plotted in log units. (A) Plot ofthe sampled data values. (O) Results ofthe nearest neighbor interpolation. (C) Result ofinverse distance
squared weighting interpolation. (D) Result of kriging.

maps if more samples were placed inside the plume. Unfor-
tunately, we believe our choice of 25 random samples to be
realistic of real groundwater problems. Other problems that are
not within our control but which are real limitations of using
groundwater data in general are the fluctuating groundwater
table, differential well depths (unless one wishes to use three-
dimensional estimation methods), and the time history of the
contamination. The latter may be the most significant as our

measures often coincide with or follow the disease events, even

though a causative exposure would have to precede it, possibly
by many years.

The disease process model we used and the measures of effect
also were arbitrary. We could use more subjects. We could con-
sider disease models with exponential or threshold effects. We
could consider situations of large relative risks, although a
relative risk of 3 seems appropriate for some environmental
agents. We could consider a variety ofways for classifying sub-
jects as exposed or unexposed [see, for example, Wartenberg and
Northidge (18)], and we could use a logistic model in preference
to an odds ratio. But we do not believe that these choices would
affect the nature ofthe results reported here. We do believe that
a more useful measure of effect would be the power to detect a
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statistically significant odds ratio and plan to use this in future
investigations. It is possible that even though ISD had a mean
odds ratio close to the truth, it would have less power thanKRG
because the estimates are more variable (higher standard devia-
tion). It is important to remember that the goal ofthis study is to
assess the utility of these methods for use in epidemiologic in-
vestigations, not to reconstruct the true groundwater contamina-
tion map. Although we make reference to the maps (Figs. 1 and
2), the statistical power of the analysis is ofprimary interest.
Each estimation method could be tuned to provide better

estimates for groundwater containation. The NN method
could be reformulated to take an average of the k nearest
neighbors rather than only the value of the nearest, as in this
study. But, unless the sampling grid is considerably more
dense, this method is not likely to perform well.
The ISD method performed better in terms of the odds

ratios than the other two methods for both contamination
scenarios, although only marginally better than KRG. In the
second scenario, one explanation for this may be that the con-
tamination model was parabolic (i.e., had quadratic terms in
which the function value changes as the square of the distance
moved) and nearly isotropic (i.e., equal effects in all direc-
tions). In other words, the contmination scenario was design-
ed to meet the assumptions of the ISD model. In the first
scenario, given the sparse sampling, a similar assumption is
not far off. Nonetheless, the estimates and the maps were not
terribly accurate, and improvements could be made. For in-
stance, ISD could be restricted so that only the k nearest
neighbors are used for the exposure estimates. This restriction
is placed on most contouring packages that use this model. It
creates a more local estimate. But this should not affect the
estimate markedly. One could try other, arbitrary weighting
schemes, such as inverse distance or inverse distance cubed.
Inverse distance squared sometimes is chosen as analogous to
a diffusion process, where materials spread as the square of
the distance from the source. Since groundwater flow is advec-
tive, inverse distance weighting might be more appropriate.
One also could use different weights for different flow direc-
tions, for anistropic fields. But this would require a more
detailed knowledge of the groundwater system than an
epidemiologist is likely to have.

Kriging offers the most opportunity for improvement. The
fitting of the variogram, to a large degree, determines the ac-
curacy of kriging estimator. We have not discussed how this
was done due to space limitation of this paper, but we can
make some recommendations. First, implicit in the kriging
model is the stationarity of the data field. Ideally, this can be
modeled and removed using trend surface analysis or a related
method and the residuals subjected to kriging (9,19). Outliers
could be identified and removed before further analysis as
these can impart undue influence on the variogram (6,13,19).
In this study, the variogram function was fit to the containa-
tion scenario rather than the samples because there were so
few samples. More samples would help. If the variogram were
fit to samples, a nugget effect could have been included to ac-
count for measurement variance. We can include a nugget ef-
fect artificially in further investigations. The neighborhood of
points considered in this study was eight. This could be varied
as well.

Conclusions
Exposure estimation is a difficult and challenging enterprise.

Results are highly data dependent, and without accurate and
plentiful samples one cannot get high resolution estimates. The
performance ofexposure estimators is highly dependent on the
underlying surface to be estimated, the number and placement
of the samples, and the estimation model used. We found that
under particular scenarios, the statistically optimal estimation
procedure, as used by a naive user, did not outperform another
model more closely aligned to the data distribution. However,
many improvements in specification and application could be
made and will be explored in future studies.

Wethank Hamilton Gilbert for assistance in data preparation. Initially, kriging
results and all plots were calculated using theGEO-EAS progrm available from
EvanEnglund, EnironmentalMonitoring Systems Laboratory, U.S. EPAin Las
Vegas, Nevada. Simulationprograms were written by the authors. This work was
conducted with support from the Massachusetts Department ofPublic Health.
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